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Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow
system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action
density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for
the m¼ n¼ 0 component of the potential. Two populations of trapped and untrapped drift wave
trajectories are shown to exist in a moving frame of reference. This novel effect leads to the
formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently
sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and
nonlinear wave trains.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898207]

I. INTRODUCTION

Heat and particle transport in modern day tokamak plas-
mas is dominantly turbulent. Coherent structures, such as
zonal flows are excited self-consistently via nonlinear turbu-
lent Reynolds stresses due to drift wave turbulence, which
then back-react (via induced diffusion in ~k space) on the
underlying turbulence, resulting in its suppression.1–6 Zonal
flows are defined as poloidal and toroidally symmetric
(qh¼ qz¼ 0, where q is the large scale wavenumber) poten-
tial perturbations with a finite radial scale q"1

r significantly
larger than the scale of the underlying small scale turbulence,
qr # kr, where k is the wave vector of the small scale
turbulence.

A standard renormalized weak turbulence theory "a la
direct interaction approximation or eddy damped quasi-
normal Markovian approximation can be formulated for the
drift wave turbulence.7 Such an approach assumes:

1. The variation in phase space velocities D(X/q) of the modu-
lation “wave” (X and q correspond to frequency and radial
wave number of modulation) is smaller than the variation in
the velocity of the quasi-particle (@vg/@k)Dk, Dk being
width of island in the phase for the quasi-particles orbit, so
that resonant island overlap can occur. That is Chirikov pa-
rameter S ¼ ð@vg=@kÞDk=DðX=qÞ > 1.

2. The amplitude of modulation is sufficiently low so that the
quasi-particle trajectories are unperturbed. Alternatively,
this amounts to saying that the Kubo number K & xb=c is
small (i.e., K < 1), where xb is the bounce frequency of
the quasi-particle and 1/c is its life time.

Such a renormalized weak turbulence theory is able to
explain certain features of the observed turbulence. However,
numerical simulations and experiments show that drift wave
turbulence exhibits several non-Gaussian features like inter-
mittency, bursty transport, etc.8–20 These characteristics are

related to the presence of coherent structures in drift-wave tur-
bulence21–23 and cannot be described by renormalized weak
turbulence theories. Nonlinear coherent structure formation in
the zonal flow envelope in simple drift wave zonal flow sys-
tem has been studied in Refs. 24–27. This paper aims at
describing the physics of nonlinear coherent structures in the
coupled ion temperature gradient (ITG) driven turbulence and
zonal flows. The methodology used is quite similar to Kaw
et al.25 and Das et al.28 The short wave high frequency drift
wave turbulence is treated as gas of quasi-particles, which is
described by the wave kinetic equation (WKE)29 for the wave
action density Nk, and the long scale zonal flow structures are
described by an evolution equation for m¼ n¼ 0 component
of the electrostatic potential Uq which is basically the flux sur-
face averaged potential vorticity equation. The coupled equa-
tion for Nk and Uq shows that the trapping of quasi-particles in
the effective potential trough generated by the zonal flow
profile in strong turbulence regime K ' 1 but S # 1. This
leads to possibility of coherent structures which can be
described in the form of Berstein-Greene-Kruskal (BGK)
waves.30 Reynold stresses offered by the trapped and
untrapped ITG waves act in synergy to generate novel coher-
ent structures like solitons, shocks, and nonlinear wave trains
in the zonal flow field in the strongly turbulent state.

II. BASIC TURBULENCE EQUATIONS

We start with the nonlinear fluid equations for ion den-
sity perturbation ni and ion temperature perturbation T
describing the background toroidal ITG turbulence31
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The electron response is assumed to be adiabatic

ne ¼ /" UZF; (3)

where UZF is the flux surface averaged zonal potential. The
above set of equations are supplemented by the quasi-
neutrality condition

ne ¼ ni: (4)

The parallel ion motion is neglected under the assumption of
x> kkcs. Here, the mixing length normalization is used for
the fluctuating quantities like potential perturbation /, den-
sity perturbation ni, pressure perturbation pi, and temperature
perturbation T: ð/; ni; p; TÞ ¼ ðed/=T0e; dni=n0; sidpi=P0;
dTi=T0ÞLn=qs.

The space-time coordinates are normalized as
x ¼ ðx" x0Þ=qs; y ¼ y=qs; z ¼ z=Ln; t ¼ tcs=Ln. And the
non-dimensional parameters are gi ¼ Ln=LT ; K ¼ sið1þ giÞ;
si ¼ T0i=T0e; and !n ¼ 2Ln=R. Here, x, y, z represent orthog-
onal slab coordinates. Ln and LT are equilibrium density and
temperature scale lengths, R is the major radius of the toka-
mak, cs is the ion sound speed at electron temperature, and
qs represents the ion sound radius.

Mode energetics: Defining

E/ ¼ 1

2

ð
d3x j/j2 þ jr?/j2

( )
; (5)

and

ET ¼ 3si
2 1þ sið Þ

1

2

ð
d3xjTj2; (6)

it is easy to show that

@t E/ þ ETð Þ ¼
3si

2 1þ sið Þ gi
ð
d3xT "@y/

( )
; (7)

where we have used the identity
Ð
d3xf ½f ; g* ¼ 0. This shows

that the energy of the system grows as the electrostatic turbu-
lent flux QES ¼

Ð
d3xTð"@y/Þ draws energy from the mean

gradients. Linearizing Eqs. (1) and (2), and using the adiaba-
ticity Eq. (3) and the quasi-neutrality Eq. (4), and eliminating
/ and T yields the dispersion relation
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The unstable root x¼xrþ ic from Eq. (8) is

xr¼
ky
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p
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where the threshold g for the instability is given by
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While the effect of finite Larmor radius (FLR) has been
retained in the real frequency estimation due to its impor-
tance for the determination of dispersive effects, it has been
neglected in obtaining the linear stability threshold. By tak-
ing Fourier transform of Eq. (2), we find that the Fourier
amplitudes Tk and /k are related by

Tk ¼ dk/k; (12)

where

dk ¼
gi "

2
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5

3
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:

By using Eqs. (9) and (10), one can show that dk is independ-
ent of k up to order k2?. In the long wavelength limit k2? < 1,
the real frequency can be expressed as

xr ¼ kyða" bk2?Þ; (13)

where

a ¼ 1

2
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3

! "
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% &
; (14)

and

b ¼ 1

2
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3
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! "
!n

% &
; (15)

and hence the radial group velocity becomes

vgr + "2kxkyb: (16)

DefiningW, ¼ 3sijdkj2=ð2ð1þ siÞÞ, the mode energy density
ek can be obtained from Eqs. (5) and (6)

ek ¼ ð1þ k2? þW,Þj/kj
2; (17)

and so the wave action density becomes

Nk ¼
1þ k2? þW,

a" bk2?
j/kj

2: (18)

III. ZONAL MODE EQUATIONS

The zonal flows are m¼ 0, n¼ 0, or qy¼ qz¼ 0 but
radial wavenumber qx 6¼ 0 modes. So the evolution equations
for the zonal perturbations can be obtained from the flux

surface averaged vorticity equation h ~r - ~Ji ¼ 0 and the flux
surface averaged temperature equation32
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@tr2
xUZF ¼ "ð1þ siÞh½/;r2

?/*i " sih½T;r2
?/*i

þ sih½@i/; @iT*i; (19)

@tTZF ¼ "h½/; T*i: (20)

Since

h½T;r2
?/*i ¼ "r2

xh@yT@x/i " h½@iT; @i/*i; (21)

and

h½/;r2
?/*i ¼ "r2

xh@y/@x/i; (22)

and for arbitrary f and g using

hf gi ¼ Re

ð
d~kf~kg

,
~k
: (23)

Equations (19) and (20) can be expressed as

@tr2
xUZF ¼ r2

xRe

ð
d~kkykxð1þ si þ dksiÞj/kj

2; (24)

@tTZF ¼ "rxRe

ð
d~kikydkj/kj

2: (25)

Here, Re stands for the real part. In a coexisting system of
ITG turbulence and zonal flow, the modulations of micro-
scale fields by mesoscale zonal flows conserve wave action
density Nk¼ ek/xr,k, where ek is the energy density of the kth
mode with real frequency xr,k. The action density has the
generic form Nk ¼ Nkðj/kj

2; jTj2Þ which by using the linear
Fourier amplitude relations can be cast in the form
Nk ¼ Nkðj/kj

2Þ. Then the modulated non-linear drivers can
be expressed as a function of Nk via dj/kj

2 ¼ CkdNk. From
Eq. (18), the coefficient Ck can be obtained as

Ck ¼
a" bk2?

1þ k2? þW,
: (26)

The wave kinetic equation is used to describe the evolution
of Nk in the presence of mean flows24,33–38

@Nk

@t
þ @xr;k

@~k
- @Nk

@~x
" @xr;k

@~x
- @Nk

@~k
¼ ckNk " DxN2

k ; (27)

where xr,k and ck are, respectively, the real frequency and
growth rate of the underlying turbulence in the presence of
slowly varying mesoscale zonal fields. The first term on the
right hand side is the linear growth and the second term is
the eddy damping due to nonlinear interactions. We can find
the steady-state turbulence spectrum hNki by letting the right
hand side of Eq. (27) to zero, i.e., ckhNki " DxhNki2 ¼ 0. To
study the stability of such a steady-state, we make a
Chapman-Enskog expansion of Nk; Nk ¼ hNki þ dNk, where
hNki is a slowly varying “mean” wave action density, and
dNk is the coherent perturbation, induced by gradients of
hNki in space ~x and ~k. The wave kinetic equation, linearized
for dNk can be written as

@

@t
þ ~vg -

@

@~x
þ ck

! "
dNk ¼

@dxr;k

@~x
- @hNki

@~k
þ dckhNki: (28)

Assuming W ¼ Wq expð"iXtþ qxxÞ where W ¼ fdNk;UZF;
TZFg, the wave kinetic equation (28) yields

dNk;q ¼ Rk;q
@dxr;k

@~x
- @hNki

@~k
þ dckhNki

% &
; (29)

where the propagator Rk,q is given by

Rk;q ¼
i

Xq "~q - ~vg þ ick
( ) : (30)

The zonal flow, being a mesoscale mode, will convect
the microturbulence. This effect is captured via
@t ! @t þ ½h/i; *. We can also write the effect of the zonal
perturbations on the dispersion relation

dxr;k ¼
dxr

dgi
dgi þ ~k? - hViE.B;

¼
kyk2?si

2 1þ k2?
( )rxTZF þ kyrx 1þ sir2

x

( )
UZF: (31)

Here, the first term represents the frequency modulation due
to modulation in gi by zonal temperature perturbations TZF,
and the second term represents the frequency modulation
due to zonal potential perturbations UZF with FLR correc-
tions. The FLR corrections to the drift wave turbulence equa-
tions are sub-dominant in the parameter regime Ti # Te,
where the wave dispersion is determined by the ion polariza-
tion drift effects, and are hence neglected.25 The modulation
in growth rate is given by the modulation in gi by zonal tem-
perature perturbations TZF

dck ¼
@ck
@gi

dgi ¼ "
jkyj
4

!nsi
gi " gth

! "1=2

rxTZF: (32)

Using Eqs. (31) and (32) yields

dNk;q ¼ Rk;q "ky#q
2Uq

@hNki
@kx

" ijkyjWgqTqhNki
% &

; (33)

where #q2 ¼ q2ð1" siq2Þ and Wg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!nsi=ðgi " gthÞ

p
=4.

Finally, using Eq. (33) the zonal flow Eqs. (24) and (25)
takes the form

@tUq ¼Re

ð
d~kkykx 1þ si þ dksið ÞCkRk;q

. "ky#q
2Uq

@hNki
@kx

"ijkyjWgqTqhNki
% &

; (34)

@tTq¼qRe

ð
d~kkydkCkRk;q "ky#q

2Uq
@hNki
@kx

"ijkyjWgqTqhNki
% &

:

(35)

Now using the ~k symmetry properties of dk, it is easy to
verify that the cross coupling terms survive if and only if
hkxi 6¼ 0, where hkxi ¼

Ð
d~kkxNk=

Ð
d~kNk is spectrally aver-

aged kx. In case hkxi¼ 0, the zonal potential and zonal tem-
perature are excited independently. The independent zonal
potential excitation criterion is "kx@ hNk i /@kx> 0 while any
kind of spectrum can excite zonal temperature. Note that
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negative exponent of Nk produces negative viscosity at the
scale of modulation (q"1), and hence zonal flow generation
is also viewed as a negative viscosity phenomenon.5,39–44

IV. COHERENT STRUCTURES: STATIONARY
SOLUTIONS

We now look for non-linear coherent stationary struc-
tures which are exact solutions of Eqs. (24), (25), and (27)
when modulational instability has already saturated. We
seek stationary solutions in the absence of source and sink
(ck¼Dxk)¼ 0 in a frame moving with velocity U. Space-
time coordinates (n, T) in the moving frame are related to the
space-time coordinates (x, t) that in the rest frame by the

transformation n¼ x"Ut and T¼ t. So @
@t ¼

@
@T " U @

@n and
@
@x ¼

@
@n ; kx ¼ kn. Defining zonal flow velocity as v¼rxUZF,

we can write stationary equation in the moving frame as

vgx " Uð ÞrnNk "rnxr;k
@Nk

@kx
¼ 0; (36)

ðlr2
n " "ÞvþUrnv¼"rn

ð
d~kkykxð1þ si þRedksiÞCkNk:

(37)

Here, l is viscous damping coefficient and " represents
neoclassical drag. Equation (36) conserves Nk along the char-
acteristic given by

dkx
dn

¼ "
ky d= dnð Þ vþ siv00ð Þ

vgx " U
;

dky
dn

¼ 0: (38)

Equation (38) can be readily integrated to give the constant
of motion W

W ¼ "kyðvþ siv00Þ þ bkyk
2
x þ kxU; ky ¼ ky0: (39)

This suggests an exact solution to Eq. (36) in the form

Nkðkx; ky; xÞ & NkðWðkx; nÞ; kyÞ: (40)

W is physically interpreted as frequency of the ITG
mode as seen from a frame moving radially with velocity U
including the Doppler shift due to zonal flow velocity pertur-
bations. While passing regions of different v and v00, the kx of
the mode changes in such a way as to keep ky and X con-
stant. Equation (39) can be expressed as

#W ¼ K2
x þ f ðnÞ; (41)

where #W ¼ W=ðbkyÞ; Kx ¼ kx þ #U , f ðnÞ ¼ "ð #U=2Þ2
"ðvþ siv00Þ=b, and #U ¼ U=ðbkyÞ. Since here ~k acts like~v in
the Liouville equation for particle probability distribution
function, Eq. (41) can be interpreted as a sum of kinetic (first
term) and potential (second term) energies giving the total
energy #W as the constant of motion. Now if profile of the
potential function f(n) is such that it has minima and maxima
(fm) then a part of drift wave population satisfying #W < fm
will get trapped around the minimum of the effective poten-
tial. Another part satisfying #W > fm will remain untrapped.
The characteristic ray equations can be written as

dx

dt
¼ "2kxkyb; (42)

dkx
dt

¼ "ky
d

dx
vþ siv00ð Þ; (43)

dky
dt

¼ 0: (44)

Using Eq. (42), the equation of motion for kx can be written
as

d2kx
dt2

¼ 2k2yb
d2v
dx2

þ si
d4v
dx4

! "
kx: (45)

If zonal flow is a propagating structure like v¼ v(x"Ut)
then in the moving frame, the above equation becomes

d2kx
dt2

¼ 2k2yb
d2v

dn2
þ si

d4v

dn4

 !

kx: (46)

Equation (46) possesses oscillatory solution when
v00 þ siv0000 < 0

kx ¼ kx0 cos ðxbtÞ; (47)

where the quasi-particle bounce frequency xb is given by

xb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k2ybðv00 þ siv0000Þ

q
: (48)

For a monochromatic zonal flow profile v ¼ v0 cosðqnÞ, the
drift wave quasi-particles will get trapped in the crests of
zonal flow field. Near the crest the bounce frequency would
be given by

xb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2yb#q

2v0
q

: (49)

One can also arrive at the same conclusions by looking at the
equation of motion in n. How trapping happens in the zonal
flow crests can be understood as follows. As the ITG quanta
rolls down the zonal flow shear layer from its maximum it
losses its kx or x(n)—momentum due to restoring force
offered by radially inward group velocity. Eventually, k2x
becomes zero and the quasi-particle gets reflected, getting
trapped in the crest. This can also be conceived from the
phase space plot of (n, kx), shown in Fig. 1, obtained from
numerical solutions of Eqs. (42) and (43) for cosine and sine
zonal flow profiles which clearly shows trapped and passing
trajectories. The trapping of quasiparticle trajectories in the
drift wave zonal flow turbulence was also shown in Ref. 45
using the method of decorrelation trajectory.46–48

So once we realized the existence of trapped and
untrapped quasi-particles population densities, the solution
for stationary Eqs. (36) and (37) can be obtained by solving
the self-consistency condition

lr2
n " " þ Urn

, -
v

¼ " 1

4
1þ si þ Redksið Þrn

ðþ1

"1
dk2y

ð1

fm

d #WJNU
#W ; ky

( )
(

þ
ðfm

f
d #WJNT

#W ; ky
( ).

; (50)
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where NU and NT are the action densities for the trapped and
untrapped part of the stationary drift wave turbulence, and J
is the Jacobian of transformation from kx to #W given by

J ¼
ð1" #Uð #W " f Þ"1=2Þða" bk2y " bð #W " f

( )1=2 " #UÞ2Þ

1þW, þ k2y þ ð #W " f
( )1=2 " #UÞ2

:

(51)

The nonlinearity in Eq. (50) is coming from the dependence
of right hand side term on f which in turn is determined by
the choice of trapped and untrapped action densities NT,U. To
figure out the nature of nonlinear structures supported by Eq.
(50), we make following choices of NT and NU:

NU

N0U
¼ 1þ

#W " fm
D

! "2
" #"1

d ky " k0yð Þ; #W > fm; (52)

NT

N0T
¼ 1þ !

fm " #W

D

! "1=2
" #

d ky " k0yð Þ; f < #W < fm: (53)

The two distributions are chosen to be continuous at
f¼ fm, as shown in Fig. 2. The monochromatic ky spectrum
might appear an extreme idealization, it safely captures the
asymmetry in mode propagation direction in poloidal direc-
tion. The choice for NU,T is a bit intuitive here. In fact, any
function of the constants of motion W, ky can be an exact
solution of the wave kinetic equation, so there is an arbitra-
riness in the choice of NU,T. If this is so then how to fix
NU,T? In reality, NU,T should be self-consistently set by the
formation of stable nonlinear flow structures at saturation in
an initial value problem picture. So for an arbitrary choice
of NU,T, one should, in principle, check the stability of the
corresponding flow structure and iterate the choice of NU,T

to finally get a stable structure. Otherwise following
Lynden-Bell,49 one may ask what is the most probable dis-
tribution subject to the constraints imposed by the conserva-
tion properties of the WKE and zonal flow equation? This is
an important and interesting direction and will be discussed
elsewhere. Instead, we made a choice based on intuition.

For example, the two distributions are continuous and have
asymptotic power law characteristics. Trapped waves distri-
bution is inspired by the choice of Bohm and Gross50 for
distribution of trapped particles in an electrostatic wave.
It is extremely difficult to evaluate the integrals on the
right hand side of Eq. (50) with the Jacobian given by Eq.
(51). Hence, some sensible simplifications are desirable.
Assuming k2? < 1 and vgx>U and expanding the J up to k2?
allows us to write

J ¼ a

1þW,
1" #bk2y " #b #W " f

( )h i
; (54)

where #b ¼ b=aþ 1=ð1þW,Þ. Using this Jacobian, the
trapped and untrapped integrals in Eq. (50) are evaluated in
the (A) which yields

ðlr2
n " " þ UrnÞv ¼"rn½aðfm " f Þ þ bðfm " f Þ3=2

þa1ðfm " f Þ2þb1ðfm " f Þ5=2*; (55)

where fm " f ¼ ðv" vmin þ siðv00 " v00minÞÞ=b since maximum
of f corresponds to minimum of v and

a ¼ #aðN0TDð1" #bk2y0Þ " N0UD#bp=2Þ=2; (56)

b ¼ #aN0TD!ð1" #bk2y0Þ=3; (57)

a1 ¼ #aN0TD#bðD=2" 1Þ=2; (58)

b1 ¼ #aN0TD!#bð2D=5" 2=3Þ: (59)

Here, #a ¼ ð1þ si þ RedksiÞðaky0Þ=ð1þW,Þ. Coefficients
containing N0T(N0U) corresponds to contributions from trap-
ped(untrapped) waves.

Now in the following Eq. (55) is investigated in different
limits. First, taking Fourier transform in n of the linearized
equation gives the dispersion relation U¼"a(1" siq

2)/b.
Since a is made of Reynolds stresses both from trapped and
untrapped wave contributions, this indicates that coupling to
trapped and untrapped waves converts the zonal flow pertur-
bations into radially propagating dispersive waves. Here, no

FIG. 1. kx, v vs n when v ¼ v0 cosðqnÞ with s¼ 1, gi¼ 3, !n¼ 0.7, ky¼ 0.2,
v0¼ 0.1, and q¼ 0.2. FIG. 2. Population distributions of trapped and untrapped waves for !¼ 0.3

and D/fm¼ 1.0.
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growth term appears because the resonant waves leading to
modulational excitation of zonal flows has already been
trapped in the large amplitude zonal flows at saturation. The
structure of the nonlinear stationary state is determined by the
nonlinear trapped wave contributions, i.e., the terms with b,
a1, and b1 in Eq. (55). Neglecting " and retaining terms up to
order 3/2, Eq. (55) becomes

V00 þ #lV0 " jV þ #bV3=2 ¼ 0; (60)

where V ¼ v" vmin; #l ¼ l=ðasiÞ; j ¼ "ðU þ a=bÞ=ðasiÞ,
and #b ¼ b=ðasib3=2Þ. Note that the V3=2 nonlinearity arises
due to trapped wave population which vanish at low zonal
flow amplitudes.

Earlier works on coherent structure of zonal flows in
drift wave turbulence reported different other types of non-
linear equations for zonal flows. Tur et al.,39 via a multiple
space-time scale reductive perturbation method, obtained a
sixth order equation with cubic nonlinearity for zonal flows.
They showed that no travelling wave solution is supported in
zonal flows envelope. Instead, a variety of stationary solu-
tions such as stationary periodic elliptic sinus, stationary
kink, and stationary soliton for zonal flow were shown to be
possible. Smolyakov et al.24 based on higher order (in
X/qvgr) non-resonant wave action density calculations
arrived at a cubic order equation with quadratic nonlinearity
in zonal flows. Radially, propagating kink soliton was shown
as a solution for the zonal flow. Similarly from perturbative
solution of WKE, considering vorticity of zonal flow as a
smallness parameter, Itoh et al.27 arrived at a quadratic order
equation with cubic nonlinearity in zonal flows. They
showed a stationary periodic solution for zonal flows. In all
these works, the nonlinearity was developed by contributions
from untrapped waves only. Hence, origin of V3=2 nonlinear-
ity here is fundamentally different from the other zonal flow
nonlinearities in the past works just mentioned above.

We now obtain the solutions for Eq. (60) in various lim-
its. For #l ¼ 0, Eq. (60) gives the quadrature

1

2

dV

dn

! "2

þW Vð Þ ¼ const; (61)

where the effective potential is given by

W Vð Þ ¼ "j
V2

2
þ 2

5
#bV5=2: (62)

Such a pseudo-potential will have a minimum if j> 0
or Ubþ a< 0 which is important for coherent structure for-
mation. A schematic of the Sagdeev pseudo-potential is
shown in Fig. 3. A pseudo-particle starting at V> 0 will
oscillate back and forth in the well with a frequency depend-
ent on the amplitude of oscillations. In real space, this situa-
tion corresponds to a nonlinear periodic zonal flow V wave
train propagating in x with speed U and having spatial period
dependent on amplitude. As the initial V approaches zero,
the amplitude as well as the period of the nonlinear wave
increases. As V starts from zero, the period is infinite and we
get a solitary pulse or soliton. In such a case, an exact soliton
solution can be written as

V ¼ 25

16

j2

#b2
sec h4

ffiffiffi
j

p

4
x" Utð Þ

% &
: (63)

This soliton structure is a back to back zonal velocity shear
layer, as shown in left panel of Fig. 4, with a significant frac-
tion of ITG quasi-particles trapped between them and held to-
gether by Reynolds stresses offered by a background
population of untrapped quasi-particles and propagating radi-
ally in(out), due to coupling between trapped and untrapped
quasi-particle populations, when a/b is positive(negative).
Now with dissipative terms retained the pseudo-particle suf-
fers a damped oscillation in the pseudo-potential and eventu-
ally settles down at the minimum value Vm ¼ j4=#b

2
. This

corresponds to a shock like structure in zonal flow field V (n),
see right panel of Fig. 4, with V going from 0 to Vm after oscil-
lating a few times around the final value. For large damping
rate, there is no ringing and the shock solution goes monotoni-
cally from 0 to Vm. If the dominant dissipation is from viscos-
ity ("¼ 0, l large), then a shock solution can be obtained as

V ¼ Vm
exp j x" Utð Þ=#l

( )

1þ exp j x" Utð Þ=2#l
( )( )2

" #
: (64)

Hence, in an initial value scenario the following picture
emerges. Beyond a critical gradient, the equilibrium
becomes unstable to ITG mode which develops into turbu-
lence. Zonal flow builds up by the nonlinear Reynold
stresses with the growth of turbulence intensity. As the
zonal flows grow via modulational instability, ITG quasi-
particles get trapped in the flows. The trapping causes
steepening of the flow. With time the zonal flow amplitude
increases, the trapping and so the steepening increases. The
moment this steepening becomes large enough to balance
the dispersion the zonal flow field takes the shape of a prop-
agating soliton. In presence of dissipative mechanisms like
viscosity, such a balance is lost and the end result becomes
a propagating oscillatory or monotonic shock structure of
the zonal flow.

In order to test these concepts in gyrokinetics, one
should use a full-f, global gyrokinetic code which allow

FIG. 3. Sketch of Sagdeev Potential for j¼ 0.8 and #b ¼ 0:5.
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proper coupling to large scale flows such as GYSELA,51,52

and use two-point, autocorrelation functions Cxðxþ dx=2;
x" dx=2Þ, by computing them directly. These can then be
studied as Wigner transform Wðx; kxÞ ¼

Ð
Cxðxþ dx=2;

x" dx=2Þe"ikxdxddx and examined in the phase space con-
sisting of position and wavenumber, where one would look
for signatures of wave-trapping in the same way one looks
for particle trapping in velocity space. One should trace
the time evolution of Wðx; kxÞ and zonal flow profile to iden-
tify the connection between the flow curvature and wave
trapping.

V. CONCLUSIONS

Motivated by the non-Gaussian and intermittent charac-
ter of observed turbulence, we studied the possibility of
coherent zonal structure formation, such as nonlinear wave
train, solitons, and shocks, in ITG turbulence in tokamaks in
strongly nonlinear regime by looking for stationary solutions
of the closed set of equations that describe the mutual inter-
action of turbulence and zonal flows consisting of the WKE
corresponding to the reduced fluid ITG system, coupled with

the equation for the zonal flows, where the Reynolds stress is
expressed in terms of the wave action density. These set of
equations are similar in structure to the Vlasov-Poisson sys-
tem of equations where the WKE corresponds to the Vlasov
equation and the zonal flows equation correspond to the time
derivative of the Poisson equation. Vlasov equation exists in
position-momentum phase space of particles while the WKE
gives evolution of action density of waves in the position-
wavenumber phase space of waves. Stationary solutions of
the WKE-Zonal flow system for ITG turbulence are studied
in this paper.

It was shown that the results for the drift-wave/zonal
flow problem that has been studied within a very similar
framework carries over directly into the case of ITG/zonal
flow system. In particular, the equations for the trajectories
of waves (or quasi-particles), in this framework show that
the ITG quasi-particles can get trapped in the “effective
potential well” formed by the zonal flow profile in the nega-
tive flow curvature regions (i.e., d2V/dr2< 0). The trapping
happens when " < cq<xb where " is collisionality, cq is the
growth rate of the modulational instability, and xb is the typ-
ical bounce frequency of the ITG quanta in the modulation
envelope. Reynolds stress calculations for a population of
trapped and untrapped quasi-particles show that the trapped
population contributes to V3=2 non-linearity in the zonal flow
equation, which provides the necessary steepening to balance
the dispersion which gives rise to a variety of radially propa-
gating structures such as periodic nonlinear wave-trains, soli-
tons, and shocks in the zonal flow field. These solutions, in
fact, represent alternate saturated states of zonal flow gener-
ated via the modulational instabilities of the ITG turbulence.
In this highly nonlinear regime coherence and quasi-particle
trapping are dominant while the usual saturated states (when
K < 1 andS > 1) are dominated by stochastic quasi-particle
motion and diffusion in phase space.7

Note that the stationary solutions in this paper were
obtained only for zonal potential assuming Bohm-Gross like
stationary distribution function for the wave action density in
kx and delta distribution in ky. It is also assumed that the lin-
ear coupling of zonal potential and zonal temperature arising
via the nonlinear stresses is weak so that the zonal potential
and zonal temperature evolution equations can be effectively
decoupled. Improving over these limitations and looking for
stationary solutions for zonal temperature, self-consistently
and stability of the stationary states are left as a future chal-
lenging task.
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APPENDIX: DERIVATION OF EQ. (55)

The trapped and untrapped integrals in Eq. (50) are eval-
uated first.

FIG. 4. (a) Zonal flow soliton and (b) zonal flow shock.
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Trapped integral (IT)

IT ¼
ðfm

f
d #W JNT

#W ; ky
( )

;

¼
ðfm

f
d #W

a

1þW,
1" #bk2y0 " #b #W " f

( )h i
N0T

. 1þ !
fm " #W

D

! "1=2
" #

: (A1)

Let fm"
#W

D ¼ x so that "d #W ¼ D dx then

IT ¼
aN0TD
1þW,

ðfm"f

0

dx 1" #bk2y0 " #b fm " f " xDð Þ
h i

1þ !x1=2
# $

;

(A2)

¼ aN0TD
1þW,

ðfm"f

0

dx 1" #bk2y0 " #b fm " fð Þ
h

þ !ð1" #bk2y0 " #b fm " fð ÞÞx1=2 þ #bDxþ #bD!x3=2
i
;

¼ aN0TD
1þW,

ð1" #bk2y0

h -
fm " fð Þ þ

2

3
! 1" #bk2y0

, -
fm " fð Þ3=2

þ #b
D
2
" 1

! "
fm " fð Þ2 þ #b!

2

5
D" 2

3

! "
fm " fð Þ5=2

&
: (A3)

Untrapped integral (IU)

IU ¼
ð1

fm

d #WJNU
#W ; ky

( )
;

¼
ð1

fm

d #W
a

1þW,
1" #bk2y0 " #b #W " f

( )h i
N0U

. 1þ
#W " fm
D

! "2
" #"1

: (A4)

Let
#W"fm
D ¼ x so that d #W ¼ D dx then

IU ¼ aN0UD
1þW,

ð1

0

dx 1" #bk2y0 " #b fm " f þ xDð Þ
h i

1þ x2½ *"1
;

(A5)

¼ aN0UD
1þW,

1" #bk2y0 " #b fm " fð Þ
h i p

2
: (A6)

In evaluating the last step, the other diverging integralÐ1
0 dxxð1þ x2Þ"1 has been ignored, as it is a mathematical
artifact of the expansion of FLR terms in Eq. (51).

Using the values of IT and IU obtained above yield the
desired Eq. (50).
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